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A non-linear mathematical model for the motion of a transport robot (TR) with a caterpillar chassis and with drives based on 
DC motors, which is a non-holonomic electromechanical system, is considered. Non-linear canonical transformations of the 
coordinates of the state and control space are constructed, which reduce the initial equations of motion of the TR to a simpler 
canonical form, which is convenient for analysing and synthesizing control systems for the TR. The conditions for the TR to be 
controllable as a controlled object are found. Algorithms are given for constructing programmed motions (PMs) of the TR. 
Stabilizing control laws are synthesized under which the PMs of the TR are asymptotically stable and transients of a specified 
nature are ensured. 0 2001 Elsevier Science Ltd. All rights resewed. 

1. FORMULATION OF THE PROBLEM 

Consider a TR with a caterpillar chassis, whose drives employ independently activated DC motors 
(DCMs), while the transmission mechanisms have absolutely rigid elements, in plane-parallel motion 
along a non-deformable horizontal base. Under a number of simplifying assumptions, the motion of 
the TR may be modelled by the following equation [l, pp. 112-116; 21 

i, = V, cos WC, j, = V, sin w, 

w,K =-k,o,,V,-f,mg+(Q,,+Q,,>/r 

(1.1) 

Laijo; + R,, l,i + kc;~i = U,i 

cxi = ipiqi; i = 1,2 

where x, and yc are the coordinates of the TR’s centre of mass (the mid-point of the axis of the drive 
wheels (sprocket wheels)) in a fixed Cartesian system of coordinates Oxy; vc - the course angle - is the 
angle at which the TR’s longitudinal axis is inclined to the Ox, axis, V, = r(Qr + Q2)/2 is the velocity of 
the TR’s centre of mass in the direction of its longitudinal axis, which coincides with the tangent to the 
TR’s trajectory of motion, i.e. V, is the projection of the velocity vector V, of the centre of mass (which 
is also directed along the TR’s longitudinal axis) onto the Cx ’ axis of the attached (moving) system of 
coordinates Cx ‘y ‘, whose Cx’ axis points from the centre of mass along the longitudinal axis of the body 
of the TR to the front part of the body, it is assumed that when V, > 0 the TR moves in a direction 
which coincides with that of the CAY’ axis, but if V, < 0, it moves in the direction opposite to that of 
Cx’, a dot over a symbol denotes the operation of differentiation with respect to the time I, r and Q,, 
Q2 are the radius and angular velocities of the drive wheels (sprockets) of the left and right sides of 
the TR, respectively, IJJ~ = (d2 - cj,)r/(21) is the course angular velocity of the TR about a vertical axis 
passing through its centre of mass, 21 is the width of the track of the TR, Q,,, and QL12 are the components 
of the two-dimensional vector Q,,= col(Q,,r, Qtr2) of g eneralized torques Q,, and QLt2 conveyed from 
the motor shafts through the transmission to the left and right driving wheels, P,, = (Q,, + Q,,$r = 
PL,l + PL12 is the tractive force of the caterpillars, Pui = Q,i/r is the tractive force of the ith caterpillar, 
M,, = (Qu2 - Q,,,)Ur is the torque generated by the tractive forces P,,, and Puz of the caterpillars, m0 
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= m + 2.To/(r2) is the reduced mass of the TR, m is the mass of the TR, Jo is the reduced moment of 
inertia of all rotating parts and the caterpillar on one side of the TR, .I, is the total moment of inertia 
of the TR about a vertical axis passing through the centre of mass, kfarr andft are the coefficients of 
the drag force F, = --,$rI V, - fimg of linear motion of the TR, g is the acceleration due to gravity, 
kf022 andf2 are the coefficients of the drag torque A4, = - kf022+c - f2mg of rotational motion of the 
TR about a vertical axis passing through the centre of mass, oi is the angle of rotation of the shaft of 
the ith motor. 

I, = col(l,, . Id) (1.2) 

is the two-dimensional vector of the currents I,, and Za2 in the armature circuits of the DCMs, Ji is the 
moment of inertia of the rotor of the ith motor, kfrii is the coefficient of the drag torque of viscous friction 
M,i = - krlii ai on the shaft of the ith motor, ip and rtPj are the transfer coefficient and efficiency of 
the ith reduction gear of the transmission, k,i is the coefficient of the electromagnetic moment 
Mi = k,,Jai of the ith DCM, L,i and R,i are the total inductance and resistance of the armature circuit 
of the ith DCM, k~i is the coefficient of proportionality of the back emf U,i = k,i CXi of the ith DCM 

U, = col(u,, 7 472) (1.3) 

is the two-dimensional vector of voltages u,r and ~4,~ applied to the armature circuits of the DCM and 

(1.4) 

where the asterisk denotes transposition. 
Note that, since the first two equations in the system of equations of motion (1.1) of the TR describe 

non-holonomic constraints [3] implemented by contact between the caterpillar chassis and the supporting 
horizontal surface (realized by the driving [sprocket] wheels of the caterpillar chassis), it follows that 
model (1.1) for the dynamics of the TR is a non-holonomic electromechanical system. 

Eliminating the variables Q,,,, Qrr2, al, a2, from Egs (1 .l) and also using notation (1.2) and (1.3) and 
relations (1.4) we obtain the equations of motion of the TR as a system of non-linear ordinary differential 
equations (ODES) in the variables xc, y,, V,, InI, 1, 

jr, = V,cos tpc, j, = V,sin WC 

where 

A =O, +@,A, =IIa, Il;,jc,,2t A, =diagllmoyJz 11 

0, = k,‘i,‘q,‘[xi]-‘, 0, = k,‘Ji,xo 

k, = A-‘k,‘[i,‘~,‘(x~)-‘k,o + kfli,xol = 11 k)j Ili,j=,.2 

Ff = col( F,, , Ff2) = A-b0 
fiw II II f2mg 

(1.6) 

A = 00, Or, kf are constant 2 x 2 matrices, F, is a two-dimensional vector and AU and 1, kp, k,, i,), q,,, 
k,,, L,, R,, k,, are diagonal 2 X 2 matrices with diagonal elements mu, J, and Ji, kfoi,, kflii> ipi, T),,,, k,,i, 
L,;, R,;, k,i, (i = 1, 2) respectively. 
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We apply non-singular linear transformations of the variables 1, (1.2) and the controls U, using the 
formulae 

i, =c~l(~,,,,i~~)=A-‘I~ (1.7) 

I;, = col(iia,,iia2) = A-'L;'u, (1.8) 

We assume that the auxiliary controls U,,, i&2 are such that 

I 
u al = Ul* iTa* = u2 

where u1 and u2 are the components of the vector of controls 

u = col(u, ( 4) 

(1.9) 

(1.10) 

applied to the inputs of system (1.5)-(1.9). 
Then the equations of motion of the TR (1.5)-( 1.10) may be written as a system of non-linear ODES 

i = F(z,u), 20 = z(Q)), t 2 to (1.11) 

where 

z = COKZ,, z2, z3, z4) 

z, =coI(xc.yc), z2 =colwc,wc), z3 =c01u~,&), 24 =col(u,,,7,2) 

q (z2 ) = col(t,, ~0s z229 z2, sin ~22) 

F,(z;) = c2, + c22z21 + D2z3 

F3(z;) = c3, + c32z32 + c33z3 + D3z4 

F~(z~~,u)z c42Z2, +c43z3 +&z42 +u 

c,, =11-7, )I, c,, =11-“,1” 1119 4 =w:, -:,I2 1 

c,, =1p2 Ii* c3, =I::;; iI1 c33 =p$, 1;; (( 

O3 =I/; -:12 I1 ‘42 =III,, 11’ ‘,3 =ii_;2, -;22 // 

k, = A-‘L;‘k,i,xo = II ll k .. 
“J ;.j=I.Z 

(1.12) 

(1.13) 
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Note that the state vector2 (1.12) of system (l.ll)-(1.13) is related to the state vector 

t=col(z;.Z~,2~‘~~) 

Tl = col(x,, yc ), z; =col(v,,~c), fs =\jlc, z4 = 1, =col(Z,,,Z,*) 

of the initial equations of the TR (1.5), (1.6) by a linear transformation 

z=H,4+Hou, 

and the vector Z is related to the vector z by a linear transformation 

t = H2z 

where 

0 allI a112 

IO 0 
O6x2 

H, =diag(~4,H,l), HII = o o 0 
, H,, = h;A-‘La;’ 

0 
0 al.21 a122 

0 10 0 

H, = diag(Z,, H,, 1, HZ, = aI I 0 0 a12 

~21 0 0 a22 

(1.14) 

(1.15) 

(1.16) 

Hi, H, i and Ho are 8 X 7,4 X 3 and 8 X 2 matrices, respectively, I,,, is the m X m identity matrix, 0bX2 
is the 6 x 2 zero matrix, 0 is the zero vector (matrix) of suitable dimension, hi = col(1, 0) is a two- 
dimensional vector, A-’ = Al = 11 alu I&=1,2 and H2 and Hz1 are 7 X 8 and 3 X 4 matrices, respectively. 

We also note that, for the initial model (1.5), (1.6) of the dynamics of the TR, it follows from Eqs 
(1.8) and (1.9) that the components LQ and ua2 of the vector of voltages U, (1.3) applied to the armature 
circuits of the DCMs are related to the components uI and u2 of the vector of controls u (1.10) by the 
relations 

Uoj =U,j(t)= Laiajl jU,(S)dt+ L,jUj2Uz(t), i=l,2, TV to 
'0 

(1.17) 

and consequently the initial equations of motion (1.5), (1.6), (1.17) of the TR are equivalent, in view 
of formulae (1.7)-(1.9), (1.14)-(1.16), to the model of the TR dynamics represented by system 
(l.ll)-(1.13), (1.10). In what follows, therefore, the formulation and solution of the problem will be 
given for the model of the TR dynamics (l.ll)-(1.13), (1.10). 

System (l.ll)-(1.13), (1.10) is said to be controllable [4] if, for any two states z 0 E R8 and zpl E R8 
(where R” is a Euclidean n-space) and any to c rl, rl - to < 00, a control u = u(r) 6.10) exists such that 
the corresponding solutionz(r) (1.12) of system (l.ll)-(1.13) satisfies the boundary (initial-boundary) 
conditions 

z(ro) = ~~0, z(4) = zpl (1.18) 

A solution 

z = z,(r), t E Ito, tl I (1.19) 

of system (1.1 l)-( 1.13), (1.10) satisfying boundary conditions (1.18) will be called a programmed motion 
(PM), and the corresponding control 

u = u,(t), r E Do, tl 1 (1.20) 

will be called a programmed control. 
We will consider some PMz (r) (1.19) (1.18) of system (l.ll)-(1.13) (1.10). We shall say that it is 

stabilizable if a control law wit .R feedback with respect to the state vector z, of the form 
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u = u(t, 2). t 2 to (1.21) 

exists such that the PM z,(t) (1.19), (1.18) is asymptotically stable. 
The problems considered below consist of investigating the controllability and stabilizability conditions 

for the mathematical model (l.ll)-(1.13), (1.10) of the TR as a controlled object. Algorithms will be 
described for constructing a PM and for synthesizing stabilizing control laws. 

2. THE EQUATIONS OF MOTION OF THE TR IN CANONICAL FORM 

The methods proposed below to investigate the conditions for controllability of the TR, the algorithms 
for constructing a PM, for synthesizing stabilizing controls and for analysing the stability of a PM are 
based on reducing the initial model (l.ll)-(1.13) (1.10) of the TR’s motion to canonical form, using 
non-linear transformations of the coordinates of the state and control space. 

We will define a canonical form for describing the equations of motion of the TR to be their 
representation as a linear ODE 

where 

i = Px + Qw, x(r0) = x0, t a fo (2.1) 

x = col(x,, x2, x3, xq), w = col(w, ) w*) 

xl = c~l(x,,y,), xi = col(xil,xi2) = Xi_, = x~~-“, i = 2,3,4 (2.2) 

(2.3) 

of the canonical state variables of the TR at the actual and 
the ith derivative with respect to t of xl = x1 (t), x(p) = x1; 

“canonical” controls and P and Q are constant 8 x 8 and 

3. REDUCTION OF THE EQUATIONS OF MOTION OF THE TR TO 
CANONICAL FORM 

We will construct a transformation of coordinates in the state space .z and control space u of the initial 
equations of motion (l.ll)-(1.13) (1.10) which reduce them to the simpler canonical form 
(2.1)-(2.1).We will seek transformations in the form 

x = Y(z) (3.1) 

w = Y;(z,“, u) (3.2) 

where Y and Ys are eight- and two-dimensional vector functions. 

w)=cow,(z,)~ Y*(z*), y;(z3), y6(z;)) (3.3) 

XI =Y,(z,)=z, (3.4) 

and Yi (i = 2, 3,4, 5) are two-dimensional vector-functions to be determined. 
We will now describe an algorithm to determine the unknown vector functions Yi (i = 2,3,4,5). To 

do this. consider the identities 

(3.5) 
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where ~Yi(,&@rk is the m x m Jacobian. Substituting into (3.5) the time derivatives & (i = 1,2,3,4) 
along trajectories of system (2.1)-(2.3) and ii(i = 1,2,3,4) along trajectories of system (l.ll)-(1.13), 
(l.lO), we obtain the relations 

(3.6) 

x 3 = a\f1202(z3 = Ritz;) 
az2 

= K,(z2)+ L3(z2)z3 = ‘y,<z:) (3.7) 

t-5 =x x3 -x2 -x:2+ 19 - - 

av2(z2) aF;(z2) cos z22 -z2] sin z22 
4z21=7=-= (3.8) 

2 aZ2 sin z22 Z2 I cos 222 

K3(Z2)= Lz(Z2)(c20 + c,,z,, ). L3(z2) = LL(Z2)4 (3.9) 

x4 
Fk(Z;+‘)= K4(Z;)+ L4(Z2)Z4 z y4<Z;) (3.10) 

(X4 = i3 = 

K4(z23)- az2 ay3(zb2(z:)+L3cz2)[ 30 -- c + c32Z2, + ‘33Z31 (3.11) 

ay3cz:) D3 = h(z2)D3 
L4(z2) = - 

aZ3 

3 
W= 

&$(Z;> F cZk+l)+ ay4(z24) ~~(~24 u) = 
c- - k 2 9 

k=2 aZk aZ4 

= K&)+ Ls(z2)u = \ys(Z24~U) (3.12) 

(w =x4 = x;4’) 

3 fqz24)= c 
k=2 

?%_$i~k(z~+‘)+ L4(t2)(c42z21 + “~~3 + “+dz42) 
k 

(3.13) 

ay4(Z,4) - L4Cz2) 
LS(z2)=7- 

4 

We have thus constructed the initial transformations (3.1) and (3.2) in analytical form (3.1) (3.3) 
(3.4), (3.6)-(3.11) and (3.12) (3.13), respectively. 

It will now be shown that the initial transformation just constructed, (3.1) (3.3) (3.4) (3.6)-(3.11) 
and (3.12) (3.13) are uniquely solvable for z and u, respectively. By virtue of (3.4) we have 

21 = O&i) = xi (3.14) 

Let us compute the principal minors A1 and AZ of the matrix L2 (3.8) 

A, = cos z22 > 0 for z22 E Q,22 = (-n/2, x/2) 

A2 = q2 # 0 for z21 E nzrl = 
a:,,, if z21 = V, > 0 

a,,, if z2, = V, < 0 

(3.15) 

where 

Q:2, = (E”,k”) (3.16) 
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a,, = t-k”.+“) (3.17) 

and E, and k, are certain positive real numbers, 0 < E, < k, < 03. 
Throughout what follows, to fix our ideas (to avoid superfluous notation and repetition of derivations), 

we will consider the case in which the set S&i, occurring in (3.15), is of the form (3.16), i.e. 

n 221 = %2, =@"A") (3.18) 

and we introduce a certain parameter p = 1 corresponding to that case. 
Note that the case in which the set SL *2i, occurring in (3.15), is of the form (3.17), i.e. 

A-2 *2, = a,, = (-ky,-Ey) (3.19) 

is treated in exactly the same way, provided that throughout the following Sections 2-6 one replaces 
set (3.16) by set (3.17) set (3.18) by set (3.19), and p = 
similar to those formulated below. 

1 by p = -1. This yields estimates and propositions 

In the case when the set QZ2,, occurring in (3.15) is of the form (3.18), it follows from Theorem 20.9 
in [5, p. 4841 that transformation (3.6) is uniquely solvable for z2 in the rectangular domain 

Qv2 = k2 = co1(z2, ,z~~) E R2 : z21 E 42, P Q:,,,z22 E fi,,,) 

that is, the following inverse transformation exists 

z2 = @2(x2) 

@2(x2) = COW2,(~2A @22(x2)) 

@2,(x2) = P&, +x22) 
2 x- = z2, = v, E Rz2, 3 n;,,, p = 1, x2 E Ro2 

Q22 (x2 ) = arctg(x,, / ~2~ ) E 422, x2 E a*2 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

C&,, =[x2 =co~(x,,,x~~)E R2 :xzI E (R’ \ 0}, x22 E R’ 

z2 =4qx2)EQ\Y*) (3.25) 

Furthermore, since the matrices L2 (3.8), L3 (3.9), L4 (3.11) and Ls (3.13) are such that ]det Li(zz) ] = 
(z2i ] > a, > 0 (i = 2, 3,4,5) for z2 E QY2, it follows that 

rankLi(z2)=2, ~2 EC&~, i=2,3,4,5 (3.26) 

and inverse matrices L;’ (z2) (i = 2,3,4,5) for the corresponding values of z2 E QY2 exist Consequently, 
transformations (3.7), (3.10) and (3.12) are uniquely solvable for zs, z4 and u, respectively, that is, they 
have inverses, of the form 

Z; =~i(X;), i=3,4 (3.27) 

where 

@;(Xi) = M,(x;-‘)+ iVi(x2)xi, i = 3,4 (3.28) 

A!;($‘) = -L;$D2(X2))K;(a$‘(X;-‘)) (3.29) 

N;(x2)=L;‘(~2(X2))=D,~,L~!1(~2(x2)), i=3,4 

L;‘(a2(x*))= LLr(X2)=II~2nI(X2)((i.j=,,2’ ~2rljtX2)= (3.30) 

=x2j/Q21(X2). 12,2j(x2)=(L1)jX2,J_j/[@2~(X2)]2, j=1,2 

a;-‘(x;-‘) =col(aqx2), @J(X&.., @;_,(x;-1)) 
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u=@&w) (3.31) 

@&,w)= ~~(~;)+~&~)W (3.32) 

M&> = -L;‘(~,(x,))K,(~:(X24)). &(x2) = &‘(@2(x2)) (3.33) 

Thus, taking Eqs (3.14), (3.21)-(3.30) into account, we have constructed the one-to-one inverse of 
the initial transformation (3.1), (3.4), (3.6)-(3.11) 

z = Q(x), x E SL, (3.34) 

where 

Qj (i = 1, ,.. ,4) are the vector functions (3.14) (3.21)-(3.30), and 

L2,=(xER8:Z=aqX)ERyr) (3.36) 

Q, =(~=co~(z,,~~,z~,z~)E R8:zi~R2,i=1,3,4;z2 l n,+,*} (3.37) 

We will now show that, if one takes any solution xl(t) of the ODE 

x,(4) = ~~(~~(XI,X12),X1(3)),U) (3.38) 

which is equivalent to system (2.1)-(2.3) for w = ‘I’j(@$(Xi, x1 
col(x,, xi2), xi3)), substitutes it into system (3.5) 

(*), xi3)), u), where xz = col(x2, x3, x4) = 

x[“=i; =\ti(zl)=YTi+,(z~‘)=Xi+,, i=l,2,3 (3.39) 

where zi = z2, and uses this system to define the vector functions zi(t) (i = 2,3,4), then the system of 
vector functions 

x1(0 = z,(t), z2Oh Z3(09 Z40) (3.40) 

will be a solution of system (1.11)-(1.13) (1.10). 
Substituting the system of vector functions (3.40) into system (l.ll)-(1.13) (1.10) all the equations 

of the latter become identities; in particular, we obtain the identity 

i, = i, ‘F,(Z2) (3.41) 

Differentiating this identity with respect to t, we obtain 

f, =i’, =i, =‘i?z(z2)=_ ay, (z* ) . 

at2 
z2 (3.42) 

It is not yet possible to replace i2 by the vector function F2, since we have not yet shown that the vector 
functionsxr(t), z*(t), z3(t), z4(t) (3.40) derived in this way from Eq. (3.38) and system (3.39) indeed satisfy 
the initial system of equations (l.ll)-(1.13), (1.10); indeed, that is just what has to be proved. 

Subtracting identity (3.7) term by term from (3.42) we obtain 

N2(z2) . 
--gz2 - &(z:)) = 0 

Similarly, differentiating the identitiesxi = ‘I’i(& (i = 3,4) (3.39) with respect to t 

(3.43) 

ik, i=3,4 
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and subtracting the identities 

i ii = $;(zi) = c 
k=2 

from (3.10) and (3.12) respectively, we obtain 

i aw.(z;) 
c L(ik-h(ti+‘))rO, i=3,4 

k=2 azk 
(3.44) 

Equations (3.43) and (3.44) may be written as a system of equations in the unknowns (zk - F&z~+~)) 
(k = 2,3,4) 

J,(z;)(i; - F;‘(zZ)) = 0 (3.45) 

where z: = col(zz, . . . 7 z5), z5 = u, G(d) = cw*<& F3<4), f-&52)) 

(3.46) 

is the 6 X 6 Jacobian and Yi(z$ = col(Y(z2), Ys(z:), Y&z;)). 
Taking relations (3.6)-(3.11) into consideration, we conclude that the matrix function Jo (3.46) is a 

lower block-diagonal matrix with diagonal 2 X 2 blocks Li (i = 2, 3, 4) (3.8), (3.9) (3.11), which, by 
(3.26) are non-singular. Therefore 

where 

rank JO(zz) = 6, Vzz E Q,, (3.47) 

n J,, = tz: = col(z,, z~) E R4 : z2 E R,, , z3 E R2) (3.48) 

and, consequently, taking note of (3.47), we conclude that the matrix function Jo (3.46) is also 
non-singular. Hence, it follows that at each point of the set sl,, (3.48), system (3.45) has only the trivial 
solution 

Bearing identity (3.41) in mind, we conclude that the vector functiony = col(xt, z2, z3, z4) = z is a solution 
of the initial system of equations (l.ll)-(1.13), (1.10). 

4. CONTROLLABILITY AND AN ALGORITHM FOR CONSTRUCTING 
A PM OF THE TR 

We will first show that the model of the TR’s motion in canonical form (2.1)-(2.3) is completely 
controllable [6, p. 2691. Since the matrix 

S = IIQ, PQ,. . ., P’QII 

has a submatrix So = )I Q, PQ, FQ, PsQl], such that, by (2.3) 1 detSO 1 = 1 and consequently 

rank S = rank So = 8 

(4.1) 

(4.2) 

it follows that system (2.1)-(2.3) is completely controllable [6, p. 269, Theorem 3.11, i.e., a control law 

w=wp = w,(t) = Q*eP*‘f~-fk~‘(~p, - e”xpo) (4.3) 

exists where 
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tz p(t l_t  ) * P* ( t l - t )d t  
Ko = I e Q Q  e (4.4) 

to 

is a constant positive definite 8 × 8 matrix by virtue of the complete controllability of system (2.1)-(2.3) 
[6], which steers system (2.1)-(2.3) from any initial state Xp(to) = X,,o = ~P(Zpo) ~ R 8 (in particular, for 
Zp0 E f2~,, where f2~, is set (3.37)) to an arbitrary terminal statexp(t13 = xpl = UL(zpl) E R 8 (in particular, 
for zpz E f 2 . )  in time tl - to < oo along a trajectory 

t 

xp = xp ( t )  = et'( '-t°)Xpo + ~eP( ' -S)Qwp(s)ds ,  t ~ [t0,tl] (4.5) 
to 

Note that in order to compute e P(t-t°), e e(t-s), e P(lr-t), e PT where P is matrix (2.3), one can use the 
representation of e e~ as 

pix i  
e Px = £ 

i=0 i! 

Hence, using transformations (3.6) and (3.8)-(3.10), we conclude that the control law 

4 4 4 
u = up = ¢I)5(xp2, wp)  = ~ 5  (tP2 (zp2), w p )  (4.6) 

4 4 3 4 where W2(zp2) = col (W2(zp2), W3(zk2), W4(zp2)), and wp and xp are defined by (4.3)-(4.5), steers the 
initial model of the motion of the TR (1.11)-(1.13) from any initial state zp(to) = Zpo E f 2 ,  to an 
arbitrary terminal state zp(tz) = zpl E £2~,, where ~ .  is set (3.37), in time tl - to < oo along a 
trajectory 

z = Zp = ~(xp)  t ~ [t 0, tl] (4.7) 

Therefore, the initial model (1.11)-(1.13),(1.10) for the TR's motion is also controllable. 

5. S T A B I L I Z A B I L I T Y  C R I T E R I A  FOR A PM OF THE TR 

We will first consider the problem of synthesizing stabilizing control laws w 'and analysing the 
stability of a PM xp(t) in the set g2~ (3.36), t t> to, for the canonical model (2.1)-(2.3) of the TR's 
motion. 

The fact that this model is completely controllable (i.e., that relations (4.2) and (4.3) are satisfied) 
implies [6, p. 274, Theorem 4.1] that a constant 2 x 8 matrix of amplification factors 

ro =lit0, ..... ro ,  II (5.1) 

exists where Foj (j = 1 . . . . .  4) are 2 × 2 blocks, such that the matrix 

r = V + Qr0 (5.2) 

has given eigenvalues )~i (i = 1 . . . . .  8), in particular, for example, such that the matrix F is stable 
(Hurwitzian) [16, p. 597], that is, Re ~.i < 0 (i = 1, ... ,8). In addition, the matrix F 0 (5.1) may be chosen 
so that the matrix F (5.2) has, say, given distinct, real, negative eigenvalues, that is 

~. i<0 (~,i~:~,j, i ~ j ;  i = !  ..... 8; j = l  ..... 8) (5.3) 

We will synthesize a control law with "canonical" feedback with respect to x, in the form 

w -- wp ÷ r 0 ( x -  xp) (5.4) 

Then the equation of the transients ex = x - x p  in the closed system (2.1)-(2.3), (5.4), (5.3) will have 
the form 
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Consequently, a PM x,,(t) (4.5) of system (2.1)~(2.Q (54, (5.1H5.3) is asymptotically stable in the 
large, with an estimate 

(e,(t)]s Bole,(r,)(exp[Y0(r-t0)], ~x(tO)=ex~~ ta to (5.6) 

and the damping of the transient e,.(t) will be of a given aperiodic nature (in particular, fore& such that 
efi + xpO = x0 = x(to) E Q,), where 

ya =maxh;, hi CO (i=l,..., 8); PO =,$I>0 

are the coefficient matrices of the Lagrange-Sylvester interpolation polynomial [7, p. 491 

ercrero) = :Fi eXp[hi(t - to)] 

and 

I4 =( 2% 
a: +...+a, ) 

are the Euclidean norms (moduli) of the vector a = col(al, . . . , a,) E R” and n X n matrix 

A = lhjlli j=l ,,, n’ . .a 
Substituting relations (5.4) (5.1)-(5.3) into (3.31) and using the coordinate transformations of the 

state space (3.3)-(3.4) (3.6)-(3.11) we obtain the desired stabilizing control law with feedback with 
respect to z 

(5.7) 

(ui =$5i(r~,l.Z)=hlg~(yr24(2:), w,+ro(~(~)--\y(~p)))7 i=v) 

where h, = col( 1, 0), h2 = col(0, 1) are two-dimensional vectors, for the initial model of the TR’s motion 
(l.ll)-(1.13). 

The equation of the transient e = z - .z~ in the initial closed model of the motion of the TR 
(l.ll)-(1.13) (5.7) (5.1)-(5.3) has the form 

where 

P = F,(e,t), e(to) = eo, t a to (5.8) 

F,(e,t)= Fje+r,,@,(Y,4(4 +Z:2). wp +r,(‘r(e+zp)-yI(zP))))- +P4 
F,(O,t)=O, eo+zpo=zOEf& 

Let us estimate the transient e in (5.8) and (5.9). We will assume that 

zp(tkqp ta to 

(5.9) 

(5.10) 
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where 

s-2, ={zp =c01(z,,,z,*,z,,.Zp4)E~yr : kwik = 

= SUPIZ,;~ (r{ < - (i = 3,4; k = 1.2)) (5.11) 
I alo 

sZq is set (3.37) and kzyik (i = 3,4; 

le,(r)l=Izl(f)-zPI(f)I=le,I(f)l=IXl(t)-Xpl(f)l (5.12) 

v2 = (p’ + Ei2)% >O,p=l, 

le3Wl~ v3(le,2(t)(+le,3(t~)~ 22 t0 (5.14) 

le4(t)Js v~(ler21+ler31+ler~l+le~~~* +le13r), tS r0 (5.15) 

Here v3 and y4 are certain constants, which will be defined in (6.18) and (6.26). 
We now estimate I e(t) I = 12(t) - z,(t) I, using estimates (5.12)-(5.15) for the vectors ei(t) = Zi(t) - 

Z,i(t) (i = 2, 3, 4). We obtain 

where 

=~oPo~~,(r,~exp[Y0(~-t,)]=~~A~(e,~~~~~~XP[Y~(~-~o)] 

e0 + Z,,O =zoERyr, tat0 

A@0(e,> = v011e,J+v4(le,,)2 +le,sJ*) 

vo, =4max{l,v2+v3+v4,v3+V4,v4} 

(5.16) 

(5.17) 
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(5.18) 

(5.19) 

ex - = COl(Zx,l, am* 9 2x4); Zxi 1, ..a 9 4) are two-dimensional vectors and AY(ec, to) = Y(eo + zfl) - 

Y(z,o). 
If follows from (5.16) and (5.17) that 

]e(t>l= IA@(e,.t)l C A~o(e,)=vo,le,l+.1(1e*~12 +le,sl*). (5.20) 

from which it follows that the vector function A@(e.r, t) is continuous with respect toe, ate, = 0, uniformly 
in t E [to, -1, and moreover A@(O, t) = 0. 

It follows from (5.16)-(5.19) (5.6) (5.3) that 

]@)I + 0 as I++00 (5.21) 

We will show that Lyapunov stability of the solution e,= 0 of system (5.5), (5.1)-(5.3) implies Lyapunov 
stability of the solution e = 0 of system (5.9) (5.1)-(5.3). 

Take any E > 0. Since the vector function A@(ex, t) = O(ex + +(t)- 0&(t)) is continuous with 
respect to e, at e, = 0, uniformly in t E [to, -1, it follows that, given E > 0, one can find co > 0 such 
that 

]eJ I < &o =a 14 = lA@( e, , 1)l-c E (5.22) 

where e, = ex(exo, t) e = ex(eo, t). 
Since the solution e, = 0 of system (5.5) (5.1)-(5.3) is Lyapunov stable, it follows that, given &o > 0, 

one can find a0 > 0 such that 

I I < 6, le,(e,o.r)l< co, E [t0,-) 

Consider the function 

AY(e,r) Y(e+z,(f))-Y(tp(f)) 

where is the function (3.3) (3.6)-(3.11). Using continuity with to e e = 
of the function AY(e, given go 0, one find 6 0 such 

(5.24) 

Taking (5.22)-(5.24) into we obtain 

leoI c 6 * lexol < 60 * le,(e,,o,r)l < EO 3 Ie(eo.r)l c E, t 2 to 

Consequently, it follows from the Lyapunov stability of the trivial solution of system (5.5), (5.1)-(5.3) 
that the trivial solution of system (5.8) (5.9) (5.1)-(5.3) is also Lyapunov stable. 



884 Yu. K. Zotov 

We have thus shown the following. 

Theorem. Let z,(t) be a given (or constructed) PM (5.10), 5.11) of the initial model of TR motion 
(l.ll)-(1.13), (1.10). Then the stabilizing control Law IA (5.7) (5.1)-(5.3) with feedback with respect 
to z guarantees asymptotic stability of the PM z,(t) (5.10), (5.11), and the transient e(t) = z(t) - z (t)in 
the closed initial model of TR motion (l.ll)-(1.13), (5.7), (5.1)-(5.3) sa 1s t’ fi es estimate (5.16)-(119). 
Note that, substituting the control law u (5.7), (5.1)-(5.3) into (1.17) and using estimates (5.16)-(5.19) 
fore = z - z~, that follow from the theorem proved above, we obtain stabilizing laws for the variation 
of the control voltages 

Uoj =u,j(t>= L,jUjI j~,,(r,,7,Z)d7+ 
‘0 

+L,j~j2&52(~0.t,z), t 2 to, i = A2 (5.25) 

applied to the armature circuits of the DCMs, such that the PM 

ip = H,z, 

where H2 is the matrix defined by transformation (1.16) of the initial equations of motion of the TR 
(1.5) (1.6), is asymptotically stable; the transient 

e=i-fp = Hz(z-zp)= H,e 

satisfies an estimate 

where 

P = lHZI~7 eo = H,Zo + Ho uao - u,,~~ ( ) = H,% + Ho(u,o - L,Akpo) 

420 = ~“(0)~ 4zpo = u,(O), %po = i&JO). The matrices H, and Ho are defined by transformation (1.15). 

6. APPENDIX 

We will successively estimate the moduli ]ei] (i = 1, 2, 3, 4) of the subvectors ei(t) of the vector 
e = z(t) - z,(t) = co1 (et, ez, e3, e4). We have 

le,(f)(=I~,(f)-z~,(l)(=le,,(t)l=IX~(t)-Xpl(t)l (6.1) 

Using the formula for finite increments of a vector-valued function 

A@,(e,,,t) = %(%z +xpz)-@*(xpz) 

We obtain (8, p. 122, Lemma 3.11 

(6.2) 
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Here, taking note of relations (3.23)-(3.26) and (3.30), we have 

A@2,(e,2.t)=@2,(eX2 +xP2)-@21(xP2)= 

=p ir (e,,, +xp2,)2 +(ex22 +xp22)2]K -[Xi21 +X:22 
yz 4 9 

p=l, ex2+xp2=x2EQ*Z 

A@22(e,2,t) = @22(er2 +Xp2)-@22(x~2)= 

= arctg 
e,22 +xp22 xp22 - arctg -, 
ex21 +xp21 xp21 

e*2 +xp2 = x2 E R@, 

8A@,(ex24 
Jm,(ex24 = de,, 

P~2!&2) P12*12(X2) = 

= 12x242) II l2r22(4 II 

where 

Let us estimate lei(t) 1 (i = 3, 4). We have 

Here (taking note of relations (3.28), (3.29), (3.9)-(3.11) and (6.5)) 

M3(er2,t)= M3(ex2 +xp2)-M)(x,,2)=-D~‘C22A~2,(e,z~t)=-D;’C22e2~ 

AM,(e,3,,r)= M4(ei2 +x~2)--4(X~2)=-L~'(~2(er2 +Xj72))x 

xK,(N(e22 +42 

= -Li’( e2 + 52 K4 ) ( ei + zi2 + Lt zp2 K4 zp2 ) -‘( ) ( 3 )=k(e~9t)+P2(e~,r)+P3Ce2ive3) 

p,(e:.f) = -D;‘D;‘Go(ei +$2)(c22e21 + D2e3) 

p2(e:.r) = -o;‘D;‘G,(e~tr)(C +c22521 + 4Zp3) 

p3(e21~e3)=-Di’(C32e21 +c33e3) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(64 

(6.9) 

G(ei +z:2) = L;‘(e2 +zp2) 
JT3(ei + $2) 

= ae 
2 
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- k/l I - ( ‘=21 + zp2l x ‘?32 + zp32 ) 

e32 + zp32 
-+,I + 

-+I + e31 + ~~31 - Qlz(e32 + zp32) 

e2l + zp21 e21 + Zp2l 

where ,?jk = eik •I zpik (i = 2, 3, k = 1, 2) 

L;‘(a2(e,2 +xp2)) = Lzx(er2 + xp2) =1(12x&x* + ~p2)~~i,j=1,2 = 

I&‘( e2 +zp2)= k&2 +zp2)=ll~2~ii(e2 +Zp2)lli j=, 2 = 
1 . 

cos 222 sin z22 
= sin zz2 cos 222 -- 

z21 Z2l 

AC,(e:,t) = GO(e: + zz2 )- Go(42) = a4s~~(e:,r)lli,j=,,2 

Ag,,,(e;.f)=O. Ag012(e:V~)=-(e2, +zp2t)e32 -zp32e21 

Ag02,(e:,r)=(e21 +Zp2,)-‘Z;:l(zp21e32 -zp32e21) 

Ag,,,(e:,r)=(ez, +zp21)-‘zpkl[zp21e31 -kf12zp2te32+(F,l -Zp31 +kf12Z~32)e21] 

(ex2.f) 1 D,?lALz,i-l(e29t)9 i = 394 

~~e~~~~l~~2~~ce~2,r~lli j=, 2 =G’(%(e12 +Xp2))- 
1 . 

- L;‘(@2(xp2)) = L;‘(e2 + 52 )- L;‘(‘pZ) ~ ~2(e2~f) =IIAf2,i(e2*r)lli,j=,,2 

Al,,ij(e,2,r)=l2,j(e,2+xp2)-I,,i(xp2)IAl,,ii(e2,r)= 

= l2zij( e2+zp2)-&(z,2), i.j=1,2 

Al,,,,(e2,r)=cos(e22 +~~~~)-cosz~22, Al,,,,(e,,t)=sin(e,, +zp22)-sinzp22. 

A~2~21(e2,~)=_si~~+:z~~‘+~, 
P Zp2l 

A[,,,,(e,,t) = co~~+:~22) -F 

P P 

Let us estimate the modulus 1 ALk(e2, t) 1 of the matrix function ALk (6.13), (6.14). We have 

~49(e2~~)(~ ~~~Aii;ikl;r)J~~~~[~llb(ee2.f)~e]e21~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tstO (6.15) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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i=1,2; j=LZ J,,l(e2.r)=I10,-sin(e22+zp22)~l 

4 l2k24 = llOw(e22 + zp22)IJ 

42,de24 = 
sin ( e22 + z,,22 ) ( e22 +zp22 ) 

( 

2 ’ 
J,,,,(e,,t) = _ ‘OS 

e21 + zp21 ) 
e2i + zp21 

J,22,(e2,f)=-CoS e22 +“y , ( 1 J,222(e2,r)=_Sin e22 +zP22 ( 1 

( e21 + zp21 ) 
e21 + zp21 

i2Efo,zy ,3,01J12i2(~2.fl= Gl (i = L2; j = 1,2) 

[Ove2] = (=%[z2 = 0e2, e2 + zp2 = z2 E a,, 0 G 0 s I} 

k AL2z = rnax(2E;Z,2(1+E;')) 

(6.16) 

Taking relations (6.2), (6.5), (6.12)-(6.16) into account, we obtain 

(6.17) 

where 

v30 = max(ID;‘l[C2219 14’Ik,39 ID;‘I}t 

k,, = suplrp3(01 = SUply3(z~2(t))lv v31 = max{l+kbL2z.k~L2z’V2} 
fZI0 1310 

(6.18) 

v32 = V3OVJl’ v3 = max{2v3,v2,v3,} 

Let us estimate 1 e4(r) 1 (6.7). To do this we first estimate the modulus ICo(e: + zz2)1 of the matrix 
function Go (6.10). We obtain 

+ (e21 I + zp21 )( )I I( 
-I 

e32 +zp32 + e21 +zp21 ) ( e32+zp32 + 
)I 
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+J-k,,, +(e*, +tp*,)-‘[-Ff, +e3, +zp3, -Q,*(e,* +zPJ+ 

d k,, +ko,&,, +zp31 +k032 e32 I I 
+zp321s koGo(l+le3, +zp3,(+le32 +zp321)s 

ckGo(l+(e3,(+(e32()9 rarO (6.19) 

where 

k 001 =*kf,, +I%lb Lo,, =L2,ER,Z,v ,,,oG’(f) =&;I sup I I 

k032 = L2,En”Zy; ,~,0[~z2,(r~+(~+k,,2)~zi,,(r)~]=kv+(~+kf,2)~: 

k OGO = max{kd031&32 }l kGO = kOGO(l + kzp31 + k,32) 

We will now estimate the modulus ACo(e:, t) for the matrix function AGO (6.11). We have 

IAC,(e:.f)~~ ~~o,2(e:.r)(.I~02,(e:,,)I+I~022(e:.r)I~ 

C k12,1e,,l+kl~,le3,1+k132k21~ k~GO(le2, t+le3,1+le321)9 rL ‘0 

(6.20) 

(6.21) 

where 

k121 = sup[lz,,,(r)(+)(e,,(r)+ z,2,(r))-‘zp:,(r)z132(r)J+ 
t==to 

+ e2, (r)+ zp2,W)-’ I( .&W(F,, -tp3,W+k ,,2zp32(f))(] = 

k 131 = sup(e,,W+z 
tao I p21 (t$‘l = ko3, = Ei’ (6.22) 

k,,, = sup 
t3to [ 

le2, 0) + z ,2,(r~+l(e2,(r)+z,2,(r,)lo+k,,2)~= 

= k, + E;‘(l +k,,,), k,,, = ma+,2,~k,d,,2} 

Let us estimate the modulus aM4(ei, r) of the vector function AM, (6.9). Using estimates (6.19), (6.20) 
and (6.21), (6.22) for the matrix functions Go (6.10) and AGO (6.11), we obtain 

(6.23) 

where 
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s I-D;'D;'IG,(e; + ~;,&‘~ze2, + D&l s 

c ~,,(l+le~,l+l~~21~le2~1+1~31)~ ra t0 

k,, = pi’4’Ikco~op,~ ko,, = max{lc*2l~l41} 

lp2(e:,r)i = I-D;‘o;lAGo(e:~r)(C2o + C22z,2, + 4+)1 s 

c k,2(le2,1+le3,1+le321)t f3 f0 

$2 = ~D;‘D,-‘~k,Go~k,,*~ 

suP(lc*ol+I~**~zp*,~~~(+lt121~~p3~~~~)~ lGol+IC2*Ib +14Ikp3 =ko,l2 
1%-J 

1~3(e2,~e,)l=I-D;‘(C32e2, +W31s $&2,I+l%I) 

k,, = max(ID;‘C~2l,l4_‘C~,l]~ km4 = max(~,,~~~2~~,3} 

Using relations (6.5), (6.19)-(6.24) we estimate the modulus led(t) 1 (6.7). We obtain 

le,(t)ls IAMq(er32~f)l+l~~(ex2.f)Xp41+IN4(ex2 +xP2)e,dlS 

zS ~,,[(~+l~,,l+l~,2l)(l~2,I+l~~I)+~k,l+l~~,l+l~~2l+l~~I]+ 

+b41e21+k&x41~ ~$+2,l+le3,l+l~32l+ 

+%l+(le3,12 +le2,12)~2+(lf3212 +le2,12)/2+ 

+(le312 +lfh12)/2+(le,12 +le,212)~2+le21+le,41]~ 

c k4(41~21+41~31+l~212 ++,I2 +le,,()r 

where 

k AN4 = 21D;‘Di’lkA&p4r 

k,, = 1D;‘D;‘lv2, kc, = “‘ax{k,,vk,,.kN4} 

v4 = k,, Xmax 1 4v2,4v,.v~,2v~,l} 

(6.24) 

(6.25) 

(6.26) 
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